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Abstract

A class of steady-state compartmental models of the circulation is examined

and it is shown that the mathematical problem for this model class involves a

single nonlinear equation. In an important subclass and with certain assump-

tions regarding the form of the Starling-type cardiac function curves, the sin-

gle equation is of the form Z = l + k log[(1 � Z)/Z] where l and k are

mathematical parameters related to the physiological parameters of the

system and Z is proportional to the cardiac output. This result holds regard-

less of the number and arrangement of compartments within the model itself

or of the number of physiological parameters the model contains. An example

of this class with 25 physiological parameters is presented to illustrate this

approach.

Introduction

Compartmental models of the cardiovascular system have

been useful for many years, going back to seminal work by

Guyton et al. (1972, 1973). Modern versions of such com-

partmental models have continued to contribute to our

understanding of physiology today (Thomas et al. 2008;

Kofr�anek and Rusz 2010; Hester et al. 2011; Moss et al.

2012; Artiles et al. 2016). Although most of today’s com-

partmental models are dynamic, time-independent steady-

state models have played an important historical role in

cardiovascular modeling, and this paper examines the

mathematical structure obtained in an idealized class of

compartmental models representing a steady-flow state

within a closed circulation. The resulting equations illus-

trate the fact that the underlying mathematical nature of

the solution of this system is independent of the number

and arrangement of the compartments involved. For a spe-

cial subclass of such models, it is shown that the required

solution depends only on a single nonlinear equation with

a small number of mathematical parameters. This approach

is applied to a previously studied (Coleman et al. 1974)

five-compartment cardiovascular model with parallel vis-

ceral and peripheral compartments, but with added vari-

able intrathoracic and abdominal pressures.

General Model Description

The general circulatory model examined in this paper has

N total compartments, with M pulmonary compartments.

It is assumed that: the model is in a steady state; the cir-

culation is closed; flow is nonpulsatile and flow out from

each side of the heart is described by a Starling-type

cardiac function curve; flow out from the noncardiac
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compartments depends linearly on the pressure difference

between the upstream and downstream compartments;

linear compliance curves relate pressure and volume in

each compartment; and no venous collapse occurs near

the right heart.

The following conventions are adopted:

• Compartment 1 represents the right atrium and it will

be designated by “R” or “1” interchangeably. It is con-

sidered as a part of the systemic circulation. Note that,

in this formulation, right atrial pressure (PR = P1) is

equal to central venous pressure (CVP).

• Compartments 2 to M + 1 are compartments within

the pulmonary circulation, with compartment M + 1

representing the left atrium, designated by “L” or

“M + 1” interchangeably.

• Compartments M + 2 to N are the remaining compart-

ments within the systemic circulation.

• Compartmental volume (Vn) is related to compartmen-

tal pressure (Pn) by the following linear relation:

Vn ¼ V0
n þ Cn � ðPn � Pe

nÞ where Cn is the compart-

mental compliance, V0
n is the compartmental unstressed

volume, and Pe
n denotes any compartmental external

pressure.

• Except for the right and left atria, compartments have

arterial and venous resistances at the inflow and out-

flow ends, respectively, designated by RAn and RVn.

• Flow out from the right and left atria are assumed to

be determined by the following nonlinear parameteriza-

tion of the Starling-type cardiac function curve (Guy-

ton et al. 1973; White et al. 1983):

FR ¼ KR

1þ aR � exp½�bR � ðPR � Pe
RÞ�

; and

FL ¼ KL

1þ aL � exp½�bL � ðPL � Pe
LÞ�

(1)

where F represents ventricular output, and K, a, and b
are heart-specific parameters.

Several immediate conclusions result from these

assumptions. First, and most importantly, an immediate

consequence of the closed circulation is the fact that

blood volume is constant in this class of models. This

simple conservation law leads to a key relationship valid

for all such models whether in a steady state or not. This

primary conservation law states

BV ¼ V0 þ
XN
n¼1

Vn ¼ constant (2)

where BV is the blood volume and V0 is the volume of

blood in the noncapacitive (noncompartmental) regions

of the circulation (and not contributing to the pressure

within the system). Thus,

BV ¼ V0 þ
XN
n¼1

V0
n þ

XN
n¼1

Cn � Pn �
XN
n¼1

Cn � Pe
n: (3)

In the steady state, the flow out from the right and left

sides of the heart (FR and FL) are both equal to the car-

diac output, Q, and the total flows through both the pul-

monary circulation and the systemic circulation are also

equal to Q. It follows (White et al. 1983) that all of the

compartmental pressures can be written as:

Pn ¼PL þGn �Q if n¼ pulmonary system compartment;

and

Pn ¼PR þGn �Q if n¼ systemic system compartment

(4)

where the Gn are functions of the resistances in either

the pulmonary or systemic circulation and depend on

the particular structure (number of compartments and

their arrangement) selected for the circulatory system

model.

Equation (3), the conservation law, may be rewritten in

the following form:

CS � PR þ CP � PL þ CR� Q

¼ DBVþ
XN
n¼1

Cn � Pe
n ¼ D ðconstantÞ (5)

where

CS ¼ C1 þ
XN

n¼Mþ2

Cn;

CP ¼
XMþ1

n¼2

Cn;

CR ¼
XM
n¼2

Cn � Gn þ
XN

n¼Mþ2

Cn � Gn

and

DBV ¼ BV� V0 �
XN
n¼1

V0
n :

Equation (5) is the equation for a plane in the

coordinates (PR, PL, Q). This plane will be called the

“conservation plane” since it results from the application

of the conservation of blood to the general model. Note

that this equation is independent of the form assumed for

the Starling-type cardiac function curves, equation (1).

For the steady-state circulatory system model, equa-

tions (1) and (5) represent three equations in three

unknowns and, in principle, may be solved for the three

unknowns: cardiac output, and right and left atrial pres-

sures. From these quantities, all other variables may be

obtained. Three general approaches for solving these
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equations will be discussed and illustrated using a five-

compartment model example.

The first approach involves utilizing a three-dimensional

graphical analysis. By plotting each of the three relation-

ships using the coordinate system (PR, PL, Q), one can

find their single mutual intersection and thus the unique

steady-state model solution. As noted above, the three

equations represent a plane and two “sigmoidal waves” in

this coordinate system. It is interesting to note that most

of the model parameters of physiological significance,

outside of the heart itself, are folded into the equation

describing the conservation plane. Thus, if the heart

parameters do not change, the physiological variables

(cardiac output, compartmental pressures, and volumes)

are all determined by “movement” of the conservation

plane in the three-dimensional space as the various non-

cardiac parameters change.

The second approach involves utilizing a two-dimen-

sional graphical analysis that results from eliminating one

of the atrial pressures using the two cardiac function rela-

tionships, equation (1), in the steady state. For example,

by setting the flow from both sides of the heart to the

same value, one can derive the following relation:

PL ¼ Pe
L �

bR
bL

� Pe
R þ 1

bL
� log

aL
aR

� �
þ bR

bL
� PR: (6)

Combining this result with equation (5) yields the

relation

where A and B are constants. If this linear function, ter-

med as the “composite flow curve” for convenience, and

the right heart function FR = Q are both plotted in the

(PR, Q) coordinate system, the intersection of the two

functions defines the solution of the steady-state model.

Note that this plot has the appearance of the intersection

of a sigmoidal cardiac output curve with a linear “venous

return” curve (Beard and Feigl 2011).

The third approach involves reducing the three rela-

tions among PR, PL, and Q to a single nonlinear equation

by eliminating PR and PL using equation (1), and substi-

tuting the result into equation (5). This yields the follow-

ing single equation for Q, the steady-state cardiac output:

CR� Q ¼ D� CS � Pe
R � CP � Pe

L

þ log
KR � Q

aR � Q

� �CS
bR� KL � Q

aL � Q

� �CP
bL

" #
: (8)

This equation has only five mathematical parameters

regardless of the number and arrangement of the com-

partments. This is best seen when the above equation is

written in the form:

Q ¼ c1 þ c2 log
ðKR �QÞc3ðKL � QÞ1�c3

Q

" #
(9)

where c1, c2, and c3 are constants. No exact solution to

this equation in terms of known functions has been

found. However, numerical solutions are readily obtain-

able since convergence is stable and rapid.

Special Case: Right/Left Heart Balance

In a special case where the two sides of the heart have the

same maximum pumping capability, KR = KL = K, and

where both sides of the heart are subjected to the same

external pressure, Pe
R ¼ Pe

L ¼ Pe, equations (8) or (9) can

be simplified further. In this case, it is convenient to

introduce the dimensionless variable Z = Q/K, the frac-

tion of maximum cardiac output, resulting in the follow-

ing general equation of the circulation for this special

class of models:

Z ¼ lþ k� log
1� Z

Z

� �
; (10)

where l and k are dimensionless parameters defined by

l ¼
D� ðCS þ CPÞ � Pe � log a

CS
bR
R � a

CP
bL
L

� �
K � CR

; (11)

and

k ¼
CS

bR
þ CP

bL

K � CR
: (12)

Equation (10) holds for the physiological region 0 <
Z < 1, since the cardiac output must lie between 0 and

the maximum value (K). Note that Z is uniquely deter-

mined by the values of the parameters l and k, but that
many different values of the two parameters may lead to

the same value of Z.

Using the Lagrange inversion theorem (Weisstein;

Whittaker and Watson 1990) to solve equation (10), it

leads to a formal series solution in the parameter k:

Zðl; kÞ ¼ lþ
X1
n¼1

kn

n!

dn�1

dln�1
logn

1� l
l

� �� �
: (13)

Q ¼
D� CP � Pe

L � bR
bL
� Pe

R þ 1
bL
� log aL

aR

h i� 	
� CS þ CP � bR

bL

� 	
� PR

CR
¼ A� B� PR (7)
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whose first four terms are:

Zðl; kÞ ¼ lþ k log
1� l
l

� �
1� k

lð1� lÞ þ
k2

l2ð1� lÞ2
 !

þ k3ð1� 2lÞ
2l2ð1� lÞ2 log

2 1� l
l

� �
þOðk4Þ

(14)

Example: A Five-Compartment Model

To illustrate the previous approach with a concrete exam-

ple, the general formalism developed above will be

applied to the five-compartment model of the circulation

whose normal state is illustrated in Figure 1A. This model

is nearly identical to a previously well-studied model

(Coleman et al. 1974), except that it includes chest and

abdominal compartments and uses the Starling curves

from equation (1). The chest compartment surrounds the

heart and lung compartments with the intrathoracic pres-

sure in the chest assumed to be uniform and equal to Pe,

that is, Pe
R ¼ Pe

L ¼ Pe. The abdominal compartment sur-

rounds the visceral compartment with a uniform pressure

equal to Pe
4 ¼ Pa. In the steady state, Pa = Pe (Agostoni

and Rahn 1960). In this model, external pressure on the

peripheral bed is ignored. For simplicity, this example

assumes KR = KL = K. Table 1 provides the parameter

values used for the model in the normal steady state,

while Table 2 provides the values of the mathematical

and physiological variables in that state.

With these assumptions, the equation defining the con-

servation plane, equation (5), becomes

Table 1. Normal values assumed for the parameters used in the five-compartment circulatory model. The cardiac function curve parameters

were taken from (White et al. 1983), the intrathoracic and abdominal pressures were taken from (Agostoni and Rahn 1960), and the remain-

ing parameters were taken from (Coleman et al. 1974).

Parameter type Parameter Value

Volume (L) BV – blood volume 5.000

V0 – blood volume in non-capacitive regions 0.452

V0
1 – unstressed volume of the right atrium 0.102

V0
2 – unstressed volume of the lungs 0.290

V0
3 – unstressed volume of the left atrium 0.102

V0
4 – unstressed volume of the viscera 1.380

V0
5 – unstressed volume of the periphery 0.600

Compliance (L/mmHg) C1 – compliance of the right atrium 0.012

C2 – compliance of the lungs 0.015

C3 – compliance of the left atrium 0.012

C4 – compliance of the viscera 0.130

C5 – compliance of the periphery 0.040

Resistance (mmHg/L/min) RA2 – arterial resistance of the lungs 0.6

RV2 – venous resistance of the lungs 1.2

RA4 – arterial resistance of the viscera 36.8

RV4 – venous resistance of the viscera 3.2

RA5 – arterial resistance of the periphery 38.4

RV5 – venous resistance of the periphery 1.6

External pressure (mmHg) Pe – intrathoracic (chest) pressure �4

Pa – abdominal pressure �4

Cardiac parameters K – maximum value of cardiac output (L/min) 13.5

aR – parameter used in sigmoidal flow equation for right heart (see eq. 2), dimensionless 55.2

bR – parameter used in sigmoidal flow equation for right heart (see eq. 2) (/mmHg) 0.870

aL – parameter used in sigmoidal flow equation for left heart (see eq. 3), dimensionless 23.1

bL – parameter used in sigmoidal flow equation for left heart (see eq. 3) (/mmHg) 0.326

Figure 1. (A) The normal steady state of the five-compartment model of the circulation with chest and abdominal cavities, as described in the

text. (See Table 2.) The units for the variables shown in these figures are: flow – L/min, pressure – mmHg, volume – L. (B) Three-dimensional

graphical analysis of the normal model steady state showing intersection of the right and left heart Starling curves and the conservation plane.

(C) Two-dimensional graphical analysis of the normal model steady state showing the intersection of the right heart Starling curve and the

composite flow (“venous return”) curve.
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CS � PR þ CP � PL þ CR�Q

¼ DBVþ
X3
n¼1

Cn � Pe þ C4 � Pa (15)

where

CS ¼C1 þ C4 þ C5;

CP ¼C2 þ C3;

CR ¼C2 � RV2 þ C4 � RV4 � f4 þ C5 � RV5 � f5;

f4 ¼ TPR

RA4 þ RV4;

f5 ¼1� f4;

TPR�1 ¼ RA4 þ RV4ð Þ�1 þ RA5 þ RV5ð Þ�1:

In the above equations, TPR represents the total periph-

eral resistance while f4 and f5 represent the fractional blood

flow to the viscera and periphery, respectively.

In addition to the normal steady state depicted in Fig-

ure 1A, this model will be examined in two other steady

states that demonstrate different points concerning model

behavior. The first state, case 1, has already been dis-

cussed fully in the original published paper (Coleman

et al. 1974), and is used here only to illustrate a point

mentioned earlier about “movement of the conservation

plane.” The second state, case 2, illustrates how it is pos-

sible to use this relatively simple model to gain insight

into an observation made during human spaceflight.

Case 1, whose steady state is depicted in Figure 2A,

involves only changing two physiological parameters: the

visceral arterial resistance, RA4, is doubled (from 36.8 to

73.6 mmHg/L/min), and the peripheral arterial resistance,

RA5, is halved (from 38.6 to 19.2 mmHg/L/min). As can

be seen from Figure 2A and Table 2, these physical

changes have quite dramatic results, increasing the cardiac

output by 42%, the arterial pressure by 15%, and moving

nearly 80% of the cardiac output through the periphery.

Table 2. Steady-state values of the physiological variables in the five-compartment model of the circulation. Units used: flow – L/min,

pressure – mmHg, volume – L, resistance – mmHg/L/min. All pressures are measured relative to normal atmospheric pressure (760 mmHg).

Variable Name Equation Normal value

Case 1 resistance

changes

Case 2 external

pressure changes

l Mu See equation (17) 0.326 0.536 0.372

k Lambda
CS
bR
þCP

bL

K�CR 0.0838 0.138 0.0838

Z Scaled cardiac output lþ k� log 1�Z
Z


 �
0.370 0.523 0.404

Q Cardiac output KZ 5 7.1 5.5

P1 = PR = CVP Right atrial pressure

(also central venous pressure)

Pe þ log aRQ
K�Q

� 	 1
bR 0 0.70 �3.8

P2 Pulmonary pressure PL + RV2Q 10 14 7

PL = P3 Left atrial pressure Pe þ log aLQ
K�Q

� 	 1
bL 4 5.9 0.4

P4 Visceral pressure PR + RV4f4Q 8 5.5 4.9

P5 Peripheral pressure PR + RV5f5Q 4 9.6 0.5

PA Arterial pressure PR + TPRQ 100 116 105

PPA Pulmonary arterial pressure PL + (RA2 + RV2)Q 13 19 10

V1 Right atrial volume V0
1 þ C1ðP1 � PeÞ 0.15 0.16 0.15

V2 Pulmonary volume V0
2 þ C2ðP2 � PeÞ 0.50 0.56 0.52

V3 Left atrial volume V0
3 þ C3ðP3 � PeÞ 0.20 0.22 0.20

V4 Visceral volume V0
4 þ C4ðP4 � PaÞ 2.94 2.62 3.06

V5 Peripheral volume V0
5 þ C5P5 0.76 0.98 0.62

TPR Total peripheral resistance
RA4þRV4ð Þ RA5þRV5ð Þ
RA4þRV4þRA5þRV5

20 16 20

f4 Fraction visceral flow TPR
RA4þRV4

0.50 0.21 0.50

f5 Fraction peripheral flow 1 � f4 0.50 0.79 0.50

Figure 2. (A) The steady state of the five-compartment model of the circulation with the peripheral arterial resistance reduced by 50% and

the visceral arterial resistance doubled from the normal values. (See Case 1 in Table 2.) (B) Three-dimensional graphical analysis of the model

steady state with the peripheral arterial resistance reduced by 50% and the visceral arterial resistance doubled from the normal values. In this

figure showing the intersection of the right and left Starling curves and the conservation plane, only the conservation plane has shifted from

Figure 1B. (C) Two-dimensional graphical analysis of the model steady state with the peripheral arterial resistance reduced by 50% and the

visceral arterial resistance doubled from the normal values. In this figure showing the intersection of the right heart Starling curve and the

composite flow (“venous return”) curve, only the latter has shifted from Figure 1C.
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These results are in complete agreement with the original

paper (Coleman et al. 1974), but are obtained with a dif-

ferent formalism. The original paper discusses a number

of other studies and provides an excellent discussion of

the utility of such a simple model.

Case 2, whose steady state is depicted in Figure 3A,

involves only reducing the intrathoracic (and abdominal)

pressure from �4 to �8 mmHg. In this case, the result-

ing steady state involves a reduction of CVP (PR in this

model) by nearly 4 mmHg, but only modest increases in

the cardiac output and the arterial pressure accompanied

by a slight movement of blood into the chest compart-

ments. This observation forms the cornerstone of a

hypothesis related to the one of the early effects of micro-

gravity on humans (White and Blomqvist 1998), a

hypothesis that has stood the test of time.

Graphical analysis of the five-compartment
model

It was mentioned in the general model description section

that there were two graphical approaches to solve the resul-

tant model equations. The first involves a three-dimensional

graphical analysis, and Figures 1B, 2B, and 3B illustrate the

results of plotting the three relations defined by equa-

tions (1) and (15) using the (PR, PL, Q) coordinate system.

These three equations are repeated here for reference:

Q ¼ K

1þ aR � exp½�bR � ðPR � PeÞ� ;

Q ¼ K

1þ aL � exp½�bL � ðPL � PeÞ� ; and

Q ¼
DBVþ P3

n¼1
Cn � Pe þ C4 � Pa � CS � PR � CP � PL

CR
:

(16)

The solution, in all the three cases (normal, case 1, and

case 2), is the value of Q at the mutual intersection of the

three surfaces. Note that in case 1, the physiological

parameters that change (resistances) are embedded in the

“conservation plane” alone and this means that the new

steady-state value of Q results only from a shift of the

conservation plane. In case 2, involving an intrathoracic

pressure change, all of the three-dimensional figures shift

and the graphical result of Figure 3B show how these

shifts lead to the new steady state.

The second graphical approach utilizes a two-dimen-

sional analysis resulting from plotting the linear relation

described by equation (7) and the Starling function

curve for the right heart using (PR, Q) coordinates.

Figures 1C, 2C, and 3C illustrate the steady-state results

for the three cases (normal, case 1, and case 2). Note

that in case 1, the arterial resistance changes only affect

the “composite flow curve” defined by equation (7)

since the Starling function curve is independent of

resistance. This is analogous to the three-dimensional

shift of the conservation plane discussed above. In case

2, the intrathoracic pressure change affects both curves

and Figure 3C shows how the resulting steady state is

obtained.

Single nonlinear equation analysis of the
five-compartment model

The single equation for this five-compartment model has

the same form as the general model equation for the spe-

cial case where the two sides of the heart have the same

maximum pumping capability and the same external

pressure, equation (10). For convenience, the defining

equations are repeated here:

Z ¼lþ k� log
1� Z

Z

� �
; with

k ¼
CS

bR
þ CP

bL

K � CR
; and

l ¼
DBVþ C4 � Pa � ðC4 þ C5Þ � Pe � log a

CS
bR
R � a

CP
bL
L

� �
K � CR

(17)

Using the normal model parameters from Table 1 and the

altered parameters for case 1 (RA4 = 73.6, RA5 = 19.2 mmHg/

L/min) and case 2 (Pe = Pa = �8 mmHg), one can easily

compute the values shown in Table 1:

Normal State: l = 0.326, k = 0.0838, and Z = 0.370

Case 1: l = 0.536, k = 0.138, and Z = 0.523

Case 2: l = 0.372, k = 0.0838, and Z = 0.404

All of the physiological variables may be computed

from these values of Z and they are presented in Table 2.

As observed earlier, knowledge of only two “mathemati-

cal” parameters is sufficient to completely determine the

Figure 3. (A) The steady state of the five-compartment model of the circulation with both the intrathoracic and abdominal pressures

decreased from �4 to �8 mmHg. (See Case 2 in Table 2.) (B) Three-dimensional graphical analysis of the model steady state with both the

intrathoracic and abdominal pressures decreased from �4 to �8 mmHg. In this figure showing the intersection of the right and left Starling

curves and the conservation plane, all three curves have shifted from normal. (C) Two-dimensional graphical analysis of the model steady state

with both the intrathoracic and abdominal pressures decreased from �4 to �8 mmHg. In this figure showing the intersection of the right heart

Starling curve and the composite flow (“venous return”) curve, both curves have shifted from normal.
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solution to this steady-state model with five compart-

ments and over 20 physiological parameters.

The approach to solve the model equations using this

single equation formulation is ideal if one wants to com-

pute the values of the physiological variables, but the

abstractness of the mathematical parameters does not lend

itself to simple interpretation in the same way that the

graphical approaches do. However, an advantage of the

single-equation formulation is the ease with which an

exact sensitivity analysis may be carried out. As is well

known, sensitivities for the model are related to the

derivative @v=@pð Þ0, where v is any variable, p is any

parameter, and the subscript 0 indicates that the partial

derivative is taken with all other independent parameters

fixed. To compute sensitivities, it is convenient to use an

equivalent form of equation (10):

Q ¼ cþ x log
K � Q

Q

� �
(18)

where c = Kl and x = Kk. Then, differentiating term by

term yields

@Q

@p

� �
0

¼
@c
@p

� 	
0
þ Q�c

x
@x
@p

� 	
0

1þ Kx
QðK�QÞ

(19)

For example, if the parameter of interest is the

intrathoracic pressure, Pe,

@Q

@Pe

� �
0

¼ � C4 þ C5

CR 1þ Kx
QðK�QÞ

� 	 : (20)

When the model is in the normal steady state,

@Q=@Pe

� 	
0
¼ �0:485 and the more usual sensitivity coef-

ficient, defined as @ logQ
@ log Pe

� 	
0
, has the value 0.388.

Sensitivities of other model variables or variables of

interest may be computed directly from the cardiac out-

put sensitivity and the equations presented in Table 2.

For example, if arterial pressure, PA, is of interest, it fol-

lows that

@PA

@Pe

� �
0

¼ 1�
ðC4 þ C5Þ TPRþ K

bRQðK�QÞ
� 	

CR 1þ Kx
QðK�QÞ

� 	 : (21)

In the normal steady state, @PA

�
@Pe

� �
0

¼ �8:89 and
@ logPA
@ log Pe

� 	
0
¼ 0:356

Discussion and Conclusion

The major result presented in this paper is most clearly

seen in the case where the right and left heart have the

same maximum pumping capacity and the intrathoracic

pressure is uniform. In that case, the resulting general

equation for this class of steady-state models of the circu-

lation, equation (10), is a dimensionless, two-parameter

equation that holds for all models in this class, regardless

of the number and arrangements of the compartments

involved.

This result is not surprising. For many years, phe-

nomenological models of the circulatory system have

relied on this kind of simplification to support qualitative

arguments concerning competing hypotheses. Although

nearly every assumption made to develop this class of

models is invalid, these models have at least one virtue

other than simplicity; they are internally consistent. This

fact allows them to be used to define experiments that

can serve to test ideas emanating from the model whose

data can lead to enhanced understanding of the system

under investigation.

Although the final results obtained through this anal-

ysis are dependent of the specific form assumed for the

Starling-type cardiac function curves, equation (1),

other forms for these cardiac function curves would

yield slightly different but generally similar results. This

can best be seen from the fact that the defining equa-

tion for the conservation plane is independent of the

form assumed for the cardiac function curves, and the

three-dimensional graphical analysis would still yield a

solution. The second and third approaches, a two-

dimensional graphical analysis, and a reduction to a

single nonlinear equation are only dependent on the

existence of an inverse to the cardiac function curves

over the region of physiological interest, allowing PR
and PL to be computed from Q. If this is the case, one

can always reduce the analysis to either a two-dimen-

sional or a one-dimensional problem, although the

form of the result may be slightly different from that

presented in this paper.
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